6,928 research outputs found

    Extracting, Transforming and Archiving Scientific Data

    Get PDF
    It is becoming common to archive research datasets that are not only large but also numerous. In addition, their corresponding metadata and the software required to analyse or display them need to be archived. Yet the manual curation of research data can be difficult and expensive, particularly in very large digital repositories, hence the importance of models and tools for automating digital curation tasks. The automation of these tasks faces three major challenges: (1) research data and data sources are highly heterogeneous, (2) future research needs are difficult to anticipate, (3) data is hard to index. To address these problems, we propose the Extract, Transform and Archive (ETA) model for managing and mechanizing the curation of research data. Specifically, we propose a scalable strategy for addressing the research-data problem, ranging from the extraction of legacy data to its long-term storage. We review some existing solutions and propose novel avenues of research.Comment: 8 pages, Fourth Workshop on Very Large Digital Libraries, 201

    Generalized Flow-Box property for singular foliations

    Get PDF
    We introduce a notion of generalized Flow-Box property valid for general singular distributions and sub-varieties (based on a dynamical interpretation). Just as in the usual Flow-Box Theorem, we characterize geometrical and algebraic conditions of (quasi) transversality in order for an analytic sub-variety XX (not necessarily regular) to be a section of a line foliation. We also discuss the case of more general foliations. This study is originally motivated by a question of Jean-Francois Mattei (concerning the strengthening of a Theorem of Mattei) about the existence of local slices for a (non-compact) Lie group action.Comment: Changes in Section

    Five--Branes and Supersymmetry Breaking in M--Theory

    Get PDF
    Supersymmetry breaking via gaugino condensation is studied in vacua of heterotic M-theory with five-branes. We show that supersymmetry is still broken by a global mechanism and that the non-perturbative superpotential takes the standard form. When expressed in terms of low energy fields, a modification arises due to a threshold correction in the gauge kinetic function that depends on five-brane moduli. We also determine the form of the low energy matter field Kahler potential. These results are used to discuss the soft supersymmetry breaking parameters, in particular the question of universality.Comment: 28 pages, Late

    Boundary Inflation

    Get PDF
    Inflationary solutions are constructed in a specific five-dimensional model with boundaries motivated by heterotic M-theory. We concentrate on the case where the vacuum energy is provided by potentials on those boundaries. It is pointed out that the presence of such potentials necessarily excites bulk Kaluza-Klein modes. We distinguish a linear and a non-linear regime for those modes. In the linear regime, inflation can be discussed in an effective four-dimensional theory in the conventional way. We lift a four-dimensional inflating solution up to five dimensions where it represents an inflating domain wall pair. This shows explicitly the inhomogeneity in the fifth dimension. We also demonstrate the existence of inflating solutions with unconventional properties in the non-linear regime. Specifically, we find solutions with and without an horizon between the two boundaries. These solutions have certain problems associated with the stability of the additional dimension and the persistence of initial excitations of the Kaluza-Klein modes.Comment: 35 pages, Latex, one eps-figur

    Variable Flavor Number Scheme for Final State Jets

    Full text link
    We discuss a variable flavor number scheme (VFNS) for final state jets which can account for the effects of arbitrary finite quark masses in inclusive jet observables. The scheme is a generalization of the VFNS scheme for PDFs applied to setups with additional dynamical scales and relies on appropriate renormalization conditions for the matrix elements in the factorization theorem. We illustrate general properties by means of the example of deep-inelastic scattering (DIS) in the endpoint region x→1x\rightarrow 1 and event shapes in the dijet limit, in particular the calculations of threshold corrections, consistency conditions and relations to mass singularities found in fixed-order massive calculations.Comment: 7 pages, 4 figures, Proceedings of the XXII. International Workshop on Deep-Inelastic Scattering and Related Subjects, 28 April - 2 May 2014, Warsaw, Polan

    Multi-Boson Interactions at the LHC

    Full text link
    This review covers results on the production of all possible electroweak boson pairs and 2-to-1 vector boson fusion at the CERN Large Hadron Collider (LHC) in proton-proton collisions at a center of mass energy of 7 and 8 TeV. The data were taken between 2010 and 2012. Limits on anomalous triple gauge couplings (aTGCs) then follow. In addition, data on electroweak triple gauge boson production and 2-to-2 vector boson scattering yield limits on anomalous quartic gauge boson couplings (aQGCs). The LHC hosts two general purpose experiments, ATLAS and CMS, which have both reported limits on aTGCs and aQGCs which are herein summarized. The interpretation of these limits in terms of an effective field theory is reviewed, and recommendations are made for testing other types of new physics using multi-gauge boson production.Comment: 53 pages, 48 figures, 4 table
    • …
    corecore